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Abstract: Pharmacophore mapping is one of the major elements of drug design in the absence of structural data of the 
target receptor. The tool initially applied to discovery of lead molecules now extends to lead optimization. Pharmacopho-
res can be used as queries for retrieving potential leads from structural databases (lead discovery), for designing molecules 
with specific desired attributes (lead optimization), and for assessing similarity and diversity of molecules using pharma-
cophore fingerprints. It can also be used to align molecules based on the 3D arrangement of chemical features or to de-
velop predictive 3D QSAR models. This review begins with a brief historical overview of the pharmacophore evolution 
followed by a coverage of the developments in methodologies for pharmacophore identification over the period from in-
ception of the pharmacophore concept to recent developments of the more sophisticated tools such as Catalyst, GASP, and 
DISCO. In addition, we present some very recent successes of the widely used pharmacophore generation methods in drug 
discovery. 
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1. INTRODUCTION 

 Virtual screening (VS) of databases is gaining increasing 
importance in drug discovery because it is a reliable and a 
low cost method for identifying lead molecules. In the phar-
maceutical industry, which is under ever increasing pressure 
to increase its success rate to bring drugs to the market, VS 
is seen as a complementary approach to experimental high-
throughput screening. VS coupled with structural biology 
has the capacity to enhance the success rate of lead identifi-
cation. Further, the growth in the identification of potential 
targets has increased the demand for reliable target valida-
tion, as well as for technologies that can identify rapidly sev-
eral quality lead candidates. The advances in computational 
techniques enable VS to make a significant impact on the 
drug discovery process [1-5]. 

 There are several tools and methods available for per-
forming VS of ligand databases depending on the availability 
of information on ligands and receptors. If the structure of 
the receptor is available, molecular docking is carried out to 
discover a lead molecule. However, several groups have 
shown that the protein structure itself is a good source of a 
pharmacophore and can be used as a first-screen before 
docking studies [6,7]. A pharmacophore-based search of 3D 
databases can be carried out even in the absence of informa-
tion on the receptor structure. In many cases, the receptor 
structure is difficult to obtain, because the receptor is em-
bedded in the transmembrane that poses an obstacle for crys-
tallization, for example, the G-protein coupled receptors 
(GPCRs). A ligand or a set of ligands that bind to a particu-
lar receptor can be utilized efficiently to search a database  
 

*Address correspondence to this author at the Department of Pharmaceuti-
cal Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mum-
bai 400 098, India; Tel: +91-22-2667 0871; Fax: +91-22-2667 0816;  
E-mail: evans@bcpindia.org 

for molecules with similar properties. The ligand-based 
pharmacophore modeling methods use information (fea-
tures) provided by a compound or a set of compounds that 
are known to bind to the desired target, to identify other 
compounds in the corporate or commercial databases with 
similar properties. This is usually achieved by similarity and 
substructure searching [8], pharmacophore matching [9] or 
3D shape matching [10]. The two methods – pharmacophore 
mapping and molecular docking complement each other and 
can be synergistically integrated to improve the drug design 
and development process.  

 This article is intended to provide an overview of phar-
macophore identification and search methods along with 
commercial algorithms incorporating these methods, which 
are currently employed in in silico screening of ligand data-
bases. The article concludes with some successful examples 
of drug discovery based on these approaches. 

2. HISTORY AND EVOLUTION OF THE PHARMA-
COPHORE CONCEPT 

 The credit for the first use of the pharmacophore concept 
goes to Paul Ehrlich who devised a way to develop dyes 
through chromophores (the part of a molecule responsible 
for imparting color). He gave the first definition for a phar-
macophore in 1890 as “a molecular framework that carries 
(phoros) the essential features responsible for a drug’s 
(pharmacon) biological activity”. The modern definition of 
pharmacophore as coined by Peter Günd is “a set of struc-
tural features in a molecule that is recognized at a receptor 
site and is responsible for that molecule’s biological activity” 
[11]. The evolution and history of the pharmacophore con-
cept has been reviewed by Peter Günd [12]. 

 The pharmacophore concept could not achieve its full 
utility until the development of 3D database searching soft-
ware in the 1990’s. The first computer program, MOLPAT 
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[13], to recognize pharmacophore patterns was developed by 
Günd, Wipke and Langridge at Princeton University in 1974. 
The demand for 3D structure searching software grew with 
the development of rapid 3D structure generation programs 
such as CONCORD [14], CORINA [15,16], AIMB [17] and 
WIZARD [18]. 3D search software like ALADDIN [19] (Ab-
bott Laboratories, later commercialized by Daylight Chemi-
cal Information Systems, Inc.) and 3D-Search [20] (Lederle 
Laboratories) were developed by pharmaceutical companies, 
while academic and government institutions developed 
CAST-3D [21] (Chemical Abstract Services), DOCK [22] 
(University of California at San Franscisco) and CAVEAT 
[23] (University of California at Berkley). Later, the group 
of Marshall developed a pharmacophore method based on 
ligand structures called “active-analog” approach [24] and 
applied it to a set of ACE inhibitors [25]. Recently, they 
validated this pharmacophore model against available ex-
perimental information and found a good correlation [26]. 

 The first commercial 3D searching system, MACCS-3D 
[27], was developed by Güner et al. and was released in De-
cember of 1989. During the next four years, all of the tech-
nology that is available today was developed – ChemDBS-
3D [28] (Chemical Design Inc., USA), UNITY [29] (Tripos 
Inc., USA) and Catalyst [30] (Accelrys Inc., USA). The 
critical demand for the pharmacophore development soft-
ware was reached when the above mentioned 3D searching 
technologies were widely available. Though most of these 
3D searching software had inbuilt query generation tools, 
specialized pharmacophore generation software were also 
being developed. Most notable among them were DISCO 
[31] by Martin et al. (Tripos Inc., USA), HipHop [32] by 
Barnum et al. (Accelrys Inc., USA), and GASP [33] by Jones 
and Willett (Tripos Inc., USA). Meanwhile, predictive mod-
els based on QSAR such as CoMFA (Tripos Inc., USA) [34] 
by Cramer et al., Apex-3D (Accelrys Inc., USA) [35] by Go-
lander and Vorpagel and HypoGen [36] by Teig et al. (Ac-
celrys Inc., USA) also came into existence. Detailed usage 
and validation of all the pharmacophore development soft-
ware have been covered in the pharmacophore book edited 
by Güner [12]. For other timely reviews in the field, the 
reader should refer to references 37 to 41. 

 A very simple example of a pharmacophore is the one 
generated using ALADDIN for agonists of the dopamine D1 
receptor. This pharmacophore contains a basic amine nitro-
gen (:N), a hydroxyl group (OH) and an aromatic ring (Ar) 
with the distances between N – O (6.8 – 8.3 Å), Ar – O (2.7 
– 2.9 Å) and Ar – N (4.2 – 4.8 Å) as shown in Fig. (1). This 
model led to the discovery of a constrained analog of dopa-
mine, A-68930, a ligand highly selective for the D1 receptor  
 

 

 

 

 

 

Fig. (1). An early pharmacophore model for dopamine D1 receptor 
agonists. 

which had been synthesized earlier for a project targeting 
adrenergic receptors [42]. 

3. PHARMACOPHORE METHODS 

 Pharmacophore modeling provides a useful framework 
for a better understanding of the existing data, and can be 
used as a productive tool in the design of compounds with 
improved potency, selectivity and/or pharmacokinetic prop-
erties. Pharmacophore models are generated by analyzing 
structure-activity relationships and mapping common struc-
tural features of active analogs. The pharmacophore can be 
identified by direct method (using receptor–ligand com-
plexes) or by indirect method (using only a collection of 
ligands that are known to interact with a given receptor, Fig. 
(2)). However direct methods are becoming extremely im-
portant because of the high rate at which protein structures 
are being determined. Depending on the level of automation 
of the process, these methods can be classified as manual or 
automatic (algorithm-based). 

 The manual method involves visual identification of 
structural and chemical features among the active molecules 
and those that are missing in the inactive ones. Then the spa-
tial relationships (3D aspects) of the common features are 
measured in the development of a draft pharmacophore. This 
is then validated by logical and/or statistical methods. Fi-
nally the model is refined until desired results are obtained. 

 MOLPAT [13] was the first automated pharmacophore 
generation computer program. Since then many advances 
have taken place in automated methods which is reflected in 
the recent commercial programs like Distance Comparison 
(DISCO [31]), HipHop [32] (a part of CATALYST [30]), Ge-
netic Algorithm Superposition Program (GASP [32]), Chem 
Diverse (3 and 4-point pharmacophore generation in Chem-X 
[43]), SLATE [44], MOLMOD [45], MIMIC [46], Mapping 
Pharamcophores In Ligands (MPHIL [47]), Dynamic Phar-
macophore approach using molecular dynamics [48] and 
receptor guided approaches. DISCO, Catalyst and GASP are 
widely used for pharmacophore identification. 

 The pharmacophore searching methods mainly differ in 
the manner of defining the query, handling conformational 
flexibility, and the approach of identifying the pharmacophore 
pattern.  

3.1. Pharmacophore Generation 

 The ligand data set for construction of the pharma-
cophore model must be selected with great care. The type of 
ligand molecules, the size of the dataset and its chemical 
diversity affect the final pharmacophore model. The Carnell-
Smith method, RAPID [49] and HipHop [32] do not take into 
consideration the activity data of molecules. CLEW [50] and 
the current version of DISCO [31] can consider information 
on inactive ligands that can be fruitfully utilized to indicate 
structural features that significantly decrease the activity. 
Models to predict the activity of unknown compounds can be 
derived using, for example, HypoGen [36] which utilizes a 
large enough set of diverse compounds (18 to 30) with dif-
ferent activity levels (4 to 5 orders of magnitude on the log 
scale). The pharmacophore generation methods such as 
HipHop [32], HypoGen [36], MPHIL [47] and RAPID [49] 
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are designed to handle small (less than 100 ligands) data 
sets. There are methods that use large data sets as input but 
then prune them into a smaller one by sorting the activities 
of ligands depending on the user specified cut off. Lastly, the 
data set, with molecules binding to the same pocket in the 

target, should be as diverse as possible, so as to get an accu-
rate pharmacophore model. However, one should be aware 
of the fact that very different ligands may bind at different 
biding sites, resulting in a bad pharmacophore model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2) Flow chart of the virtual screening process using the pharmacophore method. 
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 In the next step, the features relevant to the pharma-
cophore discovery are extracted from the input ligands (fea-
ture extraction, Fig. (2)). Features can be defined depending 
on topology (phenyl ring and carbonyl group), function (H-
bond donor/acceptor, acid, base, aromatic ring and hydro-
phobic group) and atom-based (3D position of atom and 
atom type). Topology-based and function-based features 
encounter some drawbacks; for example, the amine nitrogen 
can be classified as both a H-bond donor and acceptor. A 
functional group can be represented by its center. The center 
of an acid, base, H-bond donor/acceptor is usually defined as 
the position of the actual atom. A hydrophobic region or an 
aromatic ring can be described by its centroid. However, a 
vector representation is more accurate than a point represen-
tation since it imposes an additional constraint on bond di-
rectionality between the ligand feature and its complemen-
tary feature on the receptor. In addition, a hydrophobic group 
can be represented by a sphere and an aromatic ring by a 
plane and it’s normal.  

 The selected features from each ligand are combined to 
form a representation of the whole structure. The program 
RAPID [49] represents ligand structures as a set of labeled 
points in 3D space, where each point is associated with an 
atom type (a feature). Another approach to represent a ligand 
structure is by a labeled graph with nodes representing the 
features and the edges representing the relations. A molecule 
can also be represented as a graph with atoms as vertices and 
the bonds as edges [51]. In another approach, a ligand struc-
ture is considered as a set of labeled points, together with the 
associated interpoint distances [52]. This type of representa-
tion is orientation-independent, in contrast to the 3D point 
set representation.  

 In the pattern identification phase (Fig. (2)), the features 
extracted from different ligand molecules are matched and 
pharmacophore candidates are proposed. A pattern or con-
figuration is a set of features with their relative locations in 
3D space. A ligand is said to match a pattern if it possesses a 
set of features and a conformation such that the features can 
be superimposed with the corresponding locations. The most 
popular approach to define a pattern is to find the Maximal 
Common Substructure (MCS) which has been implemented 
in DISCO [31], RAPID [49], GAMMA [53], and GASP [33]. 
This approach is based on the assumption that a common 
pharmacophore is responsible for the observed activity. The 
drawback of the MCS approach can be overcome by relaxing 
the requirement that all input ligands possess all the features 
(Relax MCS approach). This approach is used in the MPHIL 
[47] program. 

 Several algorithms have been developed for pattern iden-
tification [52]. The clique detection algorithm [52,55,56] is 
implemented in DISCO [31] and MPHIL [47] programs. 
HipHop [32] and SCAMPI [57] use an exhaustive search 
algorithm in which the search for a pattern starts with small 
sets of features, extending them until no larger common pat-
terns exist. HypoGen [36] uses a similar approach but also 
incorporates information on activity in the pharmacophore 
derivation. This is done in three steps: the constructive stage 
identifies pharmacophore candidates that are common 
among the most active set of ligands, this is followed by the 
subtractive stage in which those candidates identified in step 

1 that are also present in more than half of the least active 
ligands are removed, and the last step of optimization at-
tempts to improve the score of the pharmacophore candi-
dates that pass the subtractive stage, by simulated annealing. 
GASP [33] and GAMMA [53] are based on the genetic algo-
rithm (GA) and also perform a conformational search as part 
of the GA run. In this way, molecular flexibility is simulated 
by applying the genetic operators to the first part of the 
chromosome. Changing the second part of the chromosome 
allows an exploration of ways to align the molecules and to 
identify the pharmacophore pattern. In the last step of phar-
macophore generation, candidates are scored and ranked; a 
lower score indicates a greater possibility that the model has 
been obtained by chance correlation.  

 As mentioned in the introductory section, VS by pharma-
cophore searching can be more efficient in presence of a 
structural knowledge of the target receptor. Receptor-based 
approach for pharmacophore generation involves an analysis 
of the features of the active site and their spatial relation-
ships; an active image of this is then used to construct the 
pharmacophore model. This gives rise to a large number of 
features and it is necessary to determine which of these are 
actually parts of the pharmacophore. The method takes as an 
input the 3D structure of the receptor (usually in PDB for-
mat) and a set of ligands with known activity. Using knowl-
edge of the active site residues (from biochemical or struc-
tural studies), a program such as LUDI [58,59] generates an 
interaction map which is a complement of the receptor bind-
ing site (Fig. (3)). The functional features such as H-bond 
donors/acceptors and lipophilic groups are identified. Often 
it is necessary to prune the number of features, since queries 
with multiple features often fail to retrieve any hits from a 
database. Therefore, 3D queries composed of fewer features 
are generated by considering all possible combinations. 
Catalyst [30] uses these queries to search a database of 
ligands. 

4. PHARMACOPHORE FINGERPRINTS 

 The Chem-X [43] software can be employed to define 
pharmacophore fingerprints in which a finite set of pharma-
cophores, also called as the pharmacophore space, is used to 
define the pharmacophore fingerprint or key. The pharma-
cophore fingerprints can be used to measure molecular simi-
larity, to design libraries, to assess their diversity and to help 
search for novel active molecules. Chem-X uses a n-point 
pharmacophore model where n is the number of pharma-
cophore features (centers), usually 3 or 4. By default, there 
are seven center points important for ligand – receptor inter-
actions. These are H-bond donor, H-bond acceptor, posi-
tively charged center, aromatic ring centroid, hydrophobic 
center, acidic center and basic center. A hydrophobic center 
is placed at the centroid of a lipophilic group. In this way, a 
4-point pharmacophore is defined by four centers and six 
inter-center distances. Furthermore, a continuous range of 
inter-center distances is partitioned into a specified number 
of bins. Consider an example of a four-point pharmacophore 
having six sides defined by 15 distance ranges. This leads to 
a large space of 210 x 156 potential four-point pharmacopho-
res, where 210 is the number of ways to chose 4 centers from 
the seven center types. This is a very high number and there-
fore seven to ten distance bins are usually used.  
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4.1. Defining Pharmacophore Fingerprints 

 Every feature in the pharmacophore space is identified by 
a bit (0 or 1) that indicates the presence (1) or absence (0) of 
potential feature. Definition of features in the binary way is 
called fingerprints. Each bit in the fingerprint corresponds to 
a potential feature. Pharmacophore fingerprints are usually 
generated for a set of compounds instead of an individual 
one. In the direct mode, in which the structure and location 
of the binding site is known, pharmacophore fingerprints can 
be generated from complementary site-points in the binding 
pocket of the receptor. Chem-X [43] or GRID [60] can be 
used to automatically generate the site-points. From the site-
points a set of complementary points can be generated to 
represent a hypothetical molecule that can bind to all possi-
ble positions in the binding pocket. This hypothetical mole-
cule is then used to define pharmacophore fingerprints in the 
same manner as for a known ligand. 

 Pharmacophore fingerprints can be used in the analysis 
of molecular similarity by counting the number of bits com-
mon in a set of molecules or by calculating a similarity coef-
ficient such as Tanimoto coefficient [61] (it ranges from 1 for 
identical molecules to 0 for molecules having no common 
bits). Pharmacophore fingerprints can also be used for as-
sessing pharmacophore diversity. Furthermore, it can be 
used to design a diverse library with a smaller number of 
molecules without compromising the diversity. 

 Pharmacophore fingerprints, as defined above, assume 
only a single bit to represent the presence or absence of a 
pharmacophore. However, a set of ligands binding to the 
same receptor can have many pharmacophores in common 
and consequently these common pharmacophores are more 
likely the actual ones responsible for binding. Therefore, the 
frequency count for each pharmacophore is also included 
while defining the pharmacophore fingerprints. 

5. DATABASES FOR USE WITH PHARMACOPHO-

RES 

5.1. Database Preparation 

 The availability of a database (DB) of ligand molecules is 
the primary requirements for performing VS either by the 
docking or pharmacophore-based search method. A corpo-
rate database or those available from chemical vendors such 
as Available Chemicals Directory (ACD) [62], Cambridge 
Structure Database (CSD [63]), World Drug Index (WDI 
[64]), or those in the public domain such as MayBridge [65], 
National Cancer Institute (NCI [66]) database, PubChem 
[67], ZINC [68], ChemDiv [69], etc., can be employed for 
this purpose. Additionally, a database of reagents and com-
pounds of known chemistries, which are readily synthesiz-
able, can be used for VS after a primary filtration of ‘drug-
like’ properties such as variation of Lipinski’s rule-of-5 [70], 
the polar surface area, etc. For lead-like properties one can 
filter the database based on rule-of-3 [71] (i.e., molecular 
weight  300, number of H-bond donors/acceptors  3, 
ClogP  3, number of rotatable bonds  3, polar surface area 

 60 Å2), so that after lead optimization the molecule fits 
into Lipinski’s rule-of-5. A database could also be filtered to 
remove compounds with specific substructures associated 
with poor chemical stability or toxicity. Also, physically 
relevant ionization and tautomeric states must be assigned to 
the compounds in the DB. It is prudent to use all the relevant 
tautomers because there is no way of knowing a priori which 
tautomer is most likely to bind to the receptor.  

 3D coordinates of a molecule can be generated using 
programs such as CORINA [72] (Molecular Networks GmbH, 
Germany), CONCORD and CONFORT (Tripos Inc., USA 
[73]) or CONVERTER (Accelrys Inc., USA [74]). Some-
times it is necessary to assign partial charges to the com-

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). LUDI interaction map of the active site of trypsin, a serine protease enzyme. Vectors that are half red and half green are hydrogen 
acceptor sites, with red for acceptor and green for acceptor antecedent. The blue and white vectors are hydrogen donor sites with white for 
the hydrogen and blue for the heavy atom. The hydrophobic sites are at the vertices of the lines that are entirely green. (Refer to online ver-
sion for color figure). 
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pounds in the database depending on the requirement of the 
3D search method being used. Another issue in VS is the 
handling of conformational flexibility of ligands in a data-
base. Conformational flexibility can be introduced in VS 
through incorporation of multiple conformations of every 
molecule in the database, by relaxing the query, or by letting 
the software generate multiple conformations during the 
search process. Storing multiple conformations of every 
ligand in the database is one way to handle conformational 
flexibility. However this is a practically intractable solution 
to the problem because the number of conformations of a 
ligand increases with the number of rotatable bonds. A small 
drug-like molecule with 4 rotatable bonds, and if scanned 
with a 120o increment of the dihedrals, can generate 81 con-
formations, and there is no firm basis to which ones should 
be selected/included in the DB. A better option is the hybrid 
approach. A combination of a multi-conformational database 
along with a flexible search, provides an efficient and effec-
tive route to DB searches. This hybrid approach is employed 
in Catalyst’s BEST search method (BEST is one of the two 
types of conformational analysis implemented in Catalyst, 
the other one is FAST). 

6. APPLICATIONS OF PHARMACOPHORE 

6.1. De Novo Design of Ligands 

 The pharmacophore can be used to design novel ligands 
that satisfy the constrains defined by the pharmacophore 
model. The NEWLEAD [75] method uses as input a set of 
disconnected molecule fragments that are consistent with the 
pharmacophore model. These fragments are then joined with 
connecting pieces that consist of small chemical groups. If 
the receptor structure is known, LUDI can be utilized to 
combine the identification of receptor-based pharmacophore 
with de novo design. Thus, the pharmacophore approach is 
an easy and fast method for searching established molecules, 
and in the absence of active ligands (usually at the start of 
new project), for designing novel molecules. 

6.2. Database Searches Based on Pharmacophore 

 As explained above, a pharmacophore query is used to 
screen 3D database(s) of compounds, which on successful 
completion retrieves a set of compounds, called hits that 
match the pharmacophore query. Some of these hits might be 
known active compounds, but others might be entirely novel 
classes of compounds. Thus, pharmacophore searching can 
be used to discover novel lead compounds with unknown 
pharmacological properties. This diversity increases the 
chances that some of the compounds will pass all the stages 
of the drug development process. 

6.3. Lead Optimization 

 The optimization of leads is a process of enhancing the 
binding affinity with simultaneous optimization of ADME 
characteristics. Both the above-mentioned methods, pharma-
cophore searching and pharmacophore-based de novo de-
sign, are capable of spawning totally new molecules contain-
ing the pharmacophore. Thus they have a good chance of 
being bioactive, but with a different pharmacokinetic/pharma-
codynamic profile.  

 3D-QSAR models may be used to predict the biological 
activity of proposed molecules (lead optimization), using 

methods like CoMFA [34]. The crucial input for CoMFA and 
related 3D-QSAR analyses is the alignment of the mole-
cules. Pharmacophore-based methods such as DISCO, GASP, 
Apex-3D and HypoGen may be used to define the rules for 
overlaying molecules. Current publications describe in detail 
how the alignments were performed, either explicitly using a 
pharmacophore discovery method, or implicitly using a 
methods such as fit atom, field fit, etc. 

 The geometric arrangement of features and the steric 
boundaries of the binding site can be inferred from the 
dataset using shape-enhanced pharmacophores generated by 
DANTE [76]. Unlike CoMFA, steric boundaries derived by 
DANTE have demonstrated to be surprisingly useful in pro-
spective applications, by defining the ‘limits of the playing 
field’, i.e., constraining the space of possible molecules that 
a chemist should consider. DANTE’s shape-enhanced phar-
macophore can easily be used as 3D database search queries, 
to screen databases composed of combinatorial libraries con-
structed around the lead. In DANTE, regions of the binding 
surface are marked either as ‘sterically forbidden’ (active 
molecules in the dataset lie within that boundary, while inac-
tive molecules in the dataset protrude beyond it), or ‘terra 
incognita’, i.e. active molecules lie within that region, and 
define the extent of that surface, but no molecules in the 
dataset protrude beyond that region. This is a very important 
but underappreciated concept for molecular design in lead 
optimization, as medicinal chemists need to discover novel 
compounds, and need to explore regions of space hitherto 
unexplored. One can use a DANTE shape-enhanced pharma-
cophore to explicitly search for molecules that extend into 
these unexplored regions, to probe new regions of chemical 
space and to see if the properties improve during lead opti-
mization.  

7. APPLICATIONS OF SOME WIDELY USED 

PHARMACOPHORE GENERATION METHODS 

7.1. DISCO 

 DISCO [31] (DIStance COmparison) is a fast, automated, 
systematic analysis introduced by Yvonne Martin and col-
leagues at Abbott Laboratories to discover (a) how many 
pharamacophores can explain the data and which conforma-
tions and superposition rules are to be used to explain the 
data; (b) the trade-off between a low RMS for superposition 
and inclusion of more points in the model; and (c) the trade-
off between a low RMS and inclusion of higher-energy con-
formations in the model. DISCO searches over the input con-
formations of a set of structures to find the pharmacophore; 
by default identifying positive, negative, hydrogen-bond 
donor, hydrogen-bond acceptor, and hydrophobic ligand 
points and hypothetical complementary receptor site points 
which are common to the set. It proposes a superposition 
rule and the bioactive conformation of each molecule. In-
stead of considering a conformation to be a three-dimen-
sional object in space, DISCO considers a conformation to 
be a set of interpoint distances. A point can have more than 
one label; for example, the hydroxyl oxygen is labeled as 
both a hydrogen-bond acceptor and donor. The distances are 
calculated not only between the locations of atoms, but also 
between points located at the hypothetical position of the 
complementary atoms of a macromolecule. DISCO uses the 
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Bron-Kerbosh clique-detection algorithm [54-56] for the 
distance comparisons. Clique detection comes from graph 
theory. A clique is a subgraph in which every node is con-
nected to every other node. The clique detection algorithm 
finds the largest clique in a reference graph which is con-
tained in every other graph in the set. For the pharmacophore 
purpose, nodes are the feature elements and connections are 
the feature-to-feature distances. The graph of the molecule is 
said to match with the reference if, for any of the molecule’s 
conformers, there exists a set of elements of the same class 
as that of the reference and the inter-element distances match 
those of the reference within a specified tolerance. 

 The molecule with the least number of conformations is 
used as a reference molecule. DISCO takes each conforma-
tion of the reference molecule in turn and compares it to all 
conformations of the other molecules. The cliques identified 
are examined in an attempt to find one that is common to at 
least one conformation of every molecule. This process is 
repeated for every conformation of the reference molecule. If 
no solution is found, the tolerances on the clique detection 
process are increased until a solution is found, or the maxi-
mum tolerance is reached. The output from a DISCO run is a 
ranked list of all possible pharmacophore mappings where 
each feature of a pharmacophore should be present in all 
molecules. This requirement may result in good pharma-
cophores being missed; hence DISCO also has the option of 
finding solutions where some molecules are excluded from 
the model. The pharmacophore model, after a suitable vali-
dation, can be used subsequently for database searches to 
discover new hits. The DISCO based pharmacophoric align-
ments have also been used as an input alignment for subse-
quent CoMFA analysis [77]. 

 Flower and colleagues have reported successful applica-
tions of DISCO in combination with database searching for 
discovery of muscarinic M3 receptor antagonists [78]. These 
molecules find use in the treatment of irritable bowel syn-
drome, chronic obstructive airway disease and urinary incon-
tinence. Three molecules, a flexible selective muscarinic M3 
antagonist and two rigid non-selective muscarinic M3 an-
tagonists, were used to derive the pharmacophore models. 
Five models were generated, out of which two 4-point mod-
els were selected based on visual inspection of the structural 
superposition. These two models were subsequently sub-
jected to a UNITY search of a database comprising of mole-
cules from the Astra Charnwood, UK ‘in-house’ compound 
bank, Aldrich, Maybridge, Specs & Biospecs and Bionet. 
The first model yielded 176 hits, while a search using the 
second model resulted in 172 hits. There were 172 hits 
common to the two sets, which were screened for muscarinic 
M3 receptor antagonist activity. Three compounds with pA2 
value of 4.83, 5.54 and 6.67 were found to be good hits. The 
best hit, the most potent of the above three was found to be a 
competitive antagonist with a simple chemical structure and 
limited similarity to existing M3 receptor antagonists (Fig. 
(4)). 

 Fossa et al. [79] have reported a pharmacophore model 
of phosphodiesterase (PDE) type III inhibitors, using DISCO 
methodology. These inhibitors, implicated for the treatment 
of congestive heart failure, bind to the cAMP site of the en-
zyme. Thirteen structurally diverse molecules, along with the 

anti conformation of cAMP, with varying biological activity 
were used to derive the pharmacophore models. Three mod-
els (Model A, a six point model; Model B, an eight point 
model and Model C, an eleven point model) with various 
combinations of molecules in the dataset were generated. 
The models were validated using GRID based calculations of 
interaction energies and subsequent 3D-QSAR using princi-
pal component analysis (PCA). The pharmacophore models 
could explain the observed selectivity and potency of various 
inhibitors and provided the basis for the design and synthesis 
of more selective inhibitors.  

 Fossa et al. [80] have also reported a topographical 
model for the PDE IV catalytic site based on the pharma-
cophore model derived using DISCO for a set of PDE IV 
inhibitors. The PDE IV inhibitors are useful for treatment of 
asthma and chronic obstructive pulmonary disease. A set of 
eighteen structurally diverse PDE IV selective inhibitors 
with a homogenous distribution of pharmacological activities 
(six compounds sets, each with moderate, good and optimal 
potency) were used to derive the pharmacophore models. 
The models were validated by calculating the molecular 
electrostatic potential and hydropathic fields with MOPAC 
and HINT respectively, for the molecular conformations se-
lected by DISCO. Three models were constructed using dif-
ferent combination of inhibitors. Model A, with all eighteen 
molecules, is a four-point model which gives the require-
ment for basic PDE IV inhibition. Model B, derived using 
compounds with good and optimal potency, is a six point 
model that gives the requirements for good PDE IV inhibi-
tion. Model C, derived using compounds with optimal po-
tency, is an eight point model that gives insights into the 
requirements for a potent PDE IV inhibitor. Comparison of 
the three models provided important structural insights for 
the design of novel and selective PDE IV inhibitors.  

7.2. GASP 

 GASP [33] (Genetic Algorithm Similarity Program) is a 
program based on genetic algorithm for superposition of 
flexible ligands to derive pharmacophore models. GASP was 
developed as part of a research project to evaluate the utility 
of Genetic Algorithms (GAs) for tackling combinatorial 
problems in molecular recognition. GASP exploits some of 
the methods that were developed in the docking program 
GOLD [81]. The GASP program does not require a priori 
knowledge of either the constraints or the nature of the 
pharmacophoric pattern, to run successfully. The only input 
required is a set of molecules. GASP uses two unique fea-
tures to find pharmacophore alignments: a genetic algorithm 

 

 

 

 

 
Fig. (4). A competitive muscarinic M3 receptor antagonist discov-
ered using pharmacophore based database search. 
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to drive the evolution of better models and a unique fitness 
function which takes into account the protein-ligand interac-
tions of different acceptors and donors.  

 A GA is a computer program that mimics the progress of 
evolution by manipulating a population of data-structures 
known as chromosomes. Staring from an initial randomly 
generated population of chromosomes, the GA repeatedly 
applies two genetic operators, crossover and mutation. 
Crossover combines chromosomes, while mutation intro-
duces random perturbations. Both operations work on parent 
chromosomes that are randomly selected from the existing 
population with a bias towards the fittest, thus introducing an 
evolutionary pressure into the algorithm. The fitness meas-
ures how good a solution to the problem under consideration 
is encoded in that chromosome. The emphasis on the sur-
vival of the fittest ensures that, over time, the population 
moves towards the optimum solution. In the present context, 
this corresponds to the best possible structural overlay of a 
series of active molecules that are presumed to bind to a bio-
logical receptor in a similar fashion. Given a set of active 
molecules, GASP selects one of them as a ‘base molecule’, 
to which the other molecules are fitted. The chromosome in 
GASP encodes a range of information that is necessary to 
ensure an appropriate overlay of a molecule onto a base 
molecule. Each chromosome contains binary strings that 
encode angles of rotation about the rotatable bonds in the 
molecules, and integer strings that map hydrogen-bond do-
nor protons, acceptor lone pairs and ring centers in the base 
molecule to corresponding sites in each of the other mole-
cules. A least-squares fitting process is used to overlay 
molecules onto the base molecule in such a way that as many 
as possible of the structural equivalences suggested by the 
mapping are formed. The fitness of a decoded chromosome 
is then a combination of the number and similarity of over-
laid features, the volume integral of the overlay, and the van 
der Waals energy of the molecular conformations.  

 Pajeva and Wiese [82] have reported a successful appli-
cation of GASP to deduce the pharmacophore for a set of 
structurally diverse molecules that bind to the P-glycoprotein 
(P-gp) veramapil binding site. The P-gp modulators find 
application as multi-drug reversal (MDR) agents. Nineteen 
structurally diverse substrates and modulators were used in 
the study. A pharmacophore model with two hydrophobic 
points, three hydrogen-bond acceptor points and one hydro-
gen-bond donor point was obtained in the study. The phar-
macophore model revealed that the binding affinity of the 
drugs depends on the number of pharmacophore points si-
multaneously involved in the interaction with P-gp. The 
authors proposed the following hypothesis to explain the 
broad structural variety of the P-gp substrates and modula-
tors: (a) the veramapil binding site of the P-gp has several 
points that can participate in hydrophobic and hydrogen-
bonding interactions; (b) different drugs can interact with 
different receptor points in different binding modes. The 
study provides a good model for prediction of binding of 
molecules to P-gp. 

7.3. Catalyst 

 Catalyst [30] is one of the widely used software for 
pharmacophore generation and database searching. The 

software contains four components: ConFirm, HypoGen, 
HipHop and CatSearch. In Catalyst, the pharmacophores are 
generally referred to as hypothesis. The primary objective of 
ConFirm is to generate a moderate number of conformations 
for a given molecule while adequately covering its confor-
mational space within a defined energy threshold. The ap-
proach is based on the ‘poling’ algorithm. If the biological 
activity data is included during the pharmacophore genera-
tion, then HypoGen is employed. Alternatively, when no 
activity data is considered during the hypothesis generation 
and only common chemical features are considered, then 
HipHop is used. CatSearch is the database searching tool in 
Catalyst which involves a rapid screening process followed 
by a rigorous atom-by-atom mapping in which a fairly com-
prehensive set of features including customizable chemical 
features (e.g. donors, acceptors, and hydrophobes), exclusion 
spheres and inclusion volumes (shape) are considered. In 
addition to the traditional pharmacophore based searching, 
shape similarity and partial match searching is also available. 
A pharmacophore model, or hypothesis, consists of a three-
dimensional configuration of chemical functions surrounded 
by tolerance spheres. A tolerance sphere defines an area in 
space that should be occupied by a specific type of chemical 
functionality. Each chemical function is assigned a weight, 
which describes its relative importance within the hypothe-
sis. A larger weight indicates that the feature is more impor-
tant in conferring the activity than the other composite parts 
of the hypothesis. HypoGen and HipHop have been used as 
alignment tools. HypoGen can include the biological activity 
as a dependent property in the alignment phase.  

 Böhm and colleagues [83] have applied Catalyst along 
with a database search using LUDI, to discover novel bacte-
rial DNA gyrase inhibitors. The pharmacophore obtained 
consists of a hydrogen bond donor, a hydrogen bond accep-
tor, and a lipophilic region. Compounds from the Available 
Chemical Dictionary (ACD) numbering about 350,000 and a 
part of the Roche compound inventory (RCI) were reduced 
to 3000 compounds using in silico screening. After screening 
3000 molecules for in vitro DNA gyrase inhibition, 150 in-
hibitors (14 scaffolds) were found to exhibit weak activity. 
Among the 14 scaffolds, 7 scaffolds were determined as 
novel DNA gyrase inhibitors, which bind to the ATP binding 
site. The optimization of the indazole scaffold provided a 
structurally novel inhibitor (Fig. (5)), 10 times more potent 
as a DNA gyrase inhibitor than novobiocin. 

 

 

 

 

 

 

 

 

Fig. (5). A novel DNA gyrase inhibitor, discovered using pahrma-
cophore-based database search, 10 times more potent than novobio-
cin. 

O OS

HN N

O



Pharmacophore Modeling in Drug Discovery and Development Medicinal Chemistry, 2007, Vol. 3 No. 2    195 

 Laggner and colleagues [84] have reported pharma-
cophore models for three protein targets involved in sterol 
metabolism. A dataset of 23 structurally diverse molecules 
with binding affinity data for emopamil binding protein 
(EBP), ERG2 (fungal counter-part of EBP) and sigma-1 re-
ceptor were used in the study to derive a pharmacophore 
model with the HypoGen module of Catalyst. These three 
enzymes of sterol metabolism share a high affinity for vari-
ous structurally diverse compounds. Three pharmacophore 
models with one positive ionizable group and four hydro-
phobic features in common, but with different spatial ar-
rangements were derived and validated. The study showed 
that hydrogen bond interactions are not required for high-
affinity inhibitor binding. The models were subsequently 
used in a database search. The databases used were the 
World Drug Index (WDI, 48,405 molecules) and a 3,525 
metabolite subset of the KEGG (Kyoto Encyclopedia of 
Genes and Genomes) COMPOUND database. In the virtual 
screen, the drugs that were reported previously to bind to one 
or several of these proteins were retrieved along with 11 new 
hits which were then tested experimentally. Inhibitors with 
nanomolar binding affinity were discovered. The ERG2 
pharmacophore model, when searched against 3525 metabo-
lites, successfully retrieved 10 substrates among the top 28 
hits. The models can be used as screens for chemically di-
verse and putative endogenous ligands.  

 There are studies reported in the literature where several 
pharmacophore generation methods have been applied to the 
same datasets and evaluated for their ability to generate 
known pharmacophores deduced from protein-ligand com-
plexes extracted from the Protein Data Bank. Andrew Leach 
and colleagues [85] have reported one such study wherein 
DISCO, GASP and Catalyst/HipHop were applied to five 
datasets comprising of thrombin (seven ligands), cyclin de-
pendent kinase 2 (CDK2, six ligands), dihyrofolate reductase 
(DHFR, six ligands), HIV reverse transcriptase (HIV-RT, ten 
ligands) and thermolysin (six ligands). The datasets were 
selected on the basis of an abundance of crystallographic 
information and diversity of the ligands. A set of ligands for 
a known protein-ligand complex were identified using the 
Relibase+ program. The pharmacophoric features for each 
ligand in a protein family were deduced by examining the 
protein-ligand complex in Relibase+ and by reference to the 
literature. A target pharmacophore was then defined as the 
set of pharmacophoric features that is common to all ligands. 
Each of the above-mentioned programs was then tested by 
its ability to generate the target pharmacophore. The program 
evaluation consisted of two phases: a ‘rigid search’ using the 
bound conformations and later a ‘flex search’ in which the 
conformational space available to the ligand is explored. The 
evaluation criteria involved calculating the RMSD between 
the hypothesis generated by the program and the target 
pharmacophore (generated by Relibase+ based on the crystal 
structure of protein-ligand complex) and the number of 
misses in the hypothesis which finally gives the extent to 
which the hypothesis is representative of the ligands. The 
study showed that GASP and Catalyst outperformed DISCO 
at reproducing the five target pharmacophores. For the 
CDK2, DHFR and thermolysin datasets, GASP ranked first 
while Catalyst delivered best results for thrombin and HIV-
RT datasets. In each of the five datasets, DISCO consistently 

performed the worst, giving satisfactory results with just two 
of the datasets (CDK2 and HIV-RT). The main difference 
between DISCO and Catalyst or GASP is that the former 
only uses distances between features to superimpose ligands. 
This might be the reason for the poor performance of 
DISCO, especially when dealing with complex target phar-
macophores. It is difficult to differentiate between GASP and 
Catalyst; both programs have their own strengths and weak-
nesses.  

8. PATENTING THE PHARMACOPHORES? 

 The answer is now YES. Though there are no reports of 
patents for QSAR studies, the pharmacophores are being 
protected under Intellectual Property Rights. The credit for 
the first application of a patent using such a knowledge-
based concept goes to Biogen. In 1998, Biogen applied for a 
world patent of pharmacophore (WO 98/04913) in which all 
compounds derived from a 3D database search of the de-
scribed pharmacophore were included. Peptor Ltd. filed a 
patent (US 6,343,257) that involves the process of develop-
ing a pharmacophore, its use in VS and the use of the hits to 
design new compounds. Another patent of a pharmacophore 
covers Hepatitis C NS3 protease inhibitors. This patent (WO 
98/46630) claims all compounds that fit the pharmacophore 
model that in turn represent the structure for inhibitors of 
Hepatitis C NS3 protease. Another patent filed for a pharma-
cophore is US 2002/0013372 for the identification of 
CYP2D6 inhibitors.  

SUMMARY AND OUTLOOK 

 A substantial increase in the number of target proteins is 
anticipated as a result of the completion of several genome 
projects. This opens more avenues for the application of 
pharmacophores in 3D searches to find new lead molecules 
with higher affinity. Currently, the indirect methods are be-
ing used to a great extent but an increasing number of pro-
tein structures being determined will shift the focus on the 
direct methods to identify (receptor-based) pharmacophores. 

 Pharmacophores play a key role in computer-aided drug 
design, especially in the absence of a receptor structure. The 
supremacy of pharmacophore methods for drug design and 
development lies in their ability to suggest a diverse set of 
compounds with the potential to possess a desired biological 
activity, but which have totally different chemical scaffolds. 
It must also be recognized that not all the SAR datasets have 
a pharmacophore, and it is essential to discover if a pharma-
cophore exists. Also, a major caveat associated with pharma-
cophore approach is that several pharmacophores may be 
possible within a single binding site and one pharmacophore 
may not describe all the possible ligands. Furthermore, it 
should be remembered that a pharmacophore is a necessary 
but insufficient condition for the ligand to interact at the re-
ceptor site and other factors like transport properties and size 
must also be considered.  
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